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Strassen’s Matric Multiplication

Let A and B be two n x n matrices. The product matrix C = AB is also an n x n matrix whose (i,j)*
element is formed by taking the elements in the i row of A and j* column of B and multiplying them
to get C(i,j).
CGp= ) AGK «BkK))
1<k =n
To compute C(i,j) using this formula we need n multiplications. Since the matrix C has n’ elements, the
time for the resulting matrix multiplication is O(n?).

The divide and conquer strategy suggests another way to compute the product of two n x n matrices.
For simplicity, Assume n = 2%, In case n is not power of 2, then enough rows and columns of 0’s can be
added to both A and B, so that the resulting dimensions are a power of 2.

Imagine that A and B are each partitioned in to 4 square sub matrices, each matrix having
dimensions% X g Then the product AB is computed as
[An A12] X Bi1 B12] _ C11 C12]
Az Ap B21 B2 C1 Gy
Then
Ci1= Aq1 Big + Agp By
Ci2 = Aq; Bip+ Agp By
C21 = Az1 Big+ Az By
C22 = Az1 Biz+ Az By
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matrices. Since two 2 X 5 matrices can be added in time cn? for some constant ¢, the overall computing

To compute AB, we need to perform 8 multiplications of % X % matrices and 4 additions of g X

time T(n) is given by the recurrence relation

b n<2
- n
T(n) 8T(E) +cn? n>2
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Hence no improvement over the conventional method has been made. Matrix multiplications are more
expensive than matrix additions.

Strassen has discovered a way to compute Cj using only 7 multiplications and 18 additions or
subtractions. His method involves first computing the seven % X g matrices P, Q, R, S, T, U and V.

Then Cj’s are computed using the matrices P, Q, R, S, T, U and V.

P =(An + Ax) (Bi1 +Bn)
Q=(Axu+A»)Bu
R =Ai1(Biz -Bx)
S =A»n(Ba -Bi)
T =(An + A)Bx
U =(A2z-An) (B +Bn)
T = (A2 - An) (Bai + B)

Then
Cu=P+S-T+V
Cp=R+T
Ca=Q+S

Cx=P+R-Q+U
The resulting recurrence relation for T(n) is

b n<2

T(n) = 7T (g) +an® n>?2
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